
Luca Biferale Dept. Physics & INFN  - University of  Rome ‘Tor Vergata’ biferale@roma2.infn.it
ELLIS-ESA whorshop on CQ and ML for huge data analysis and EO, May 27 2021

Multiscale nature of 3D Turbulent flows
K. Burger, M. Treib, R. Wasterman, S. Werner, C. 
Lalescu, A. Szalay, C. Meneveau and G. Eyink. #84174 
APS -DF Meeting. 2015

Carta Marina anno 1539 Veneciis. Olao Magno

Machine Learning  Tools for PDEs Solvers &  PDEs Tools for Machine Learning  Loops 

CREDITS: M. Buzzicotti, F. Bonaccorso (Univ. Tor Vergata, Rome-IT);  A. Mazzino (Univ. Genova, IT); P. Clark di Leoni (JHU, USA)

mailto:biferale@roma2.infn.it


small particles/colloidal aggregates: 
Stokes drag, added  mass, lift force, etc...

+ boundary conditions + initial conditions

temperature
magnetic field

COMPLEX FLUIDS  &  COMPLEX FLOWS
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+ EXTREME -> ACCURACY!!!PD
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Bentkamp, L, Cr C. Lalescu, and M. Wilczek. 
"Nature communications 10.1 (2019): 1-8.
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Holder continuos 1/3
non-differentiable!
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NON GAUSSIAN STATISTICS
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1) MULTI-SCALE PHYSICS: BILLIONS OF DEGREES OF FREEDOM
2) ROUGH NON-DIFFERENTIABLE FIELDS
3) NON-GAUSSIAN STATISTICS

(1)

(2)

(3)

MULTISCALE
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EXTREME EVENTS L.B. et al  Particle trapping in three-dimensional fully developed turbulence 
Physics of Fluids 17 (2), 021701 (2005)

Exascale Deep Learning for Climate Analytics. Gordon Bell Award 2018 T. Kurth et al. 



small particles/colloidal aggregates: 
Stokes drag, added  mass, lift force, etc...

+ boundary conditions + initial conditions

temperature
magnetic field

1. NO WAY TO PREDICT STATISTICS FOR MEAN PROFILES OR EXTREME EVENTS FROM EoM

(out of equilibrium: no  Gibbs distributions!)

2. NO WAY TO PERFORM DIRECT NUMERICAL SIMULATIONS FOR REALISTIC PROBLEMS

WE NEED QUANTITATIVE MODELS AND  TOOLS TO MODEL!



PDEs
PHYSICS 

INFORMED

1. EQUATION-
INFORMED

2. PDE SOLVERS IN 
THE LOOP

ML- DATA 
DRIVEN

1. ML TOOLS AUGMENTED BY PDEs SOLUTIONS: DATA ASSIMILATION, FLOW RECONSTRUCTION, INPAINTING, SUPER-RESOLUTION
2. PDEs MODELING AUGMENTED by ML: LARGE-EDDY-SIMULATIONS, MODEL REDUCTION, HOMOGENEIZATION



EQUATION FREE
GENERATIVE-ADVERSARIAL-NETWORK

NUDGING

1. DATA ASSIMILATION, FLOW RECONSTRUCTION, INPAINTING, SUPER-RESOLUTION

ML - DATA 
DRIVEN

EQUATIONS 
BASED



3D TURBULENCE UNDER ROTATION 

4096x4096x4096 collocoation points

EXTRACT 300K
2D FRAMES

AT 64X64
FOR TRAINING

AND VALIDATION



GENERATIVE ADVERSARIAL NETWORK: CONTEXT ENCODER 

MINIMIZE:

MAXIMIZE:

D[truth]=1; D[fake]=0

Reconstruction of turbulent data with deep generative models for 
semantic inpainting from TURB-Rot database
M. Buzzicotti, F. Bonaccorso, P. Clark Di Leoni, and L. B.
Phys. Rev. Fluids 6, 050503 , May 2021

DATA DRIVEN
NO-EQUATIONS
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G
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LADV = h(log(D[vorig] + (1� log(D[vgen])i

LTOT = LG + �LADV



NUDGING: AN EQUATION-INFORMED UNBIASED TOOL TO ASSIMILATE AND RECONSTRUCT TURBULENCE 
DATA/PHYISICS BY  ADDING A DRAG TERM AGAINST PARTIAL FIELD MEASUREMENTS

MPO

C.C. Lalescu, C. Meneveau and G.L. Eyink. Synchronization of Chaos in Fully Developed Turbulence. Phys. Rev. Lett. 110, 084102 (2013)
A.Farhat, E. Lunasin, and E.S. Titi. Abridged Continuous Data Assimilation for the 2d Navier-Stokes Equations  Utilizing Measurements of Only One Component of 
the Velocity Field. J.  Math. Fluid Mech. 18(1), 1 (2016)
Patricio Clark Di Leoni, Andrea Mazzino, and L.B. Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows 
Phys. Rev. X 10, 011023 (2020)

EQUATIONS 
BASED

NO NEED TO TRAIN!! NAVIER AND STOKES DID  THE JOB FOR YOU: ONE CONF IS ENOUGH

vtruevN = G[vtrue]

G

NEED HUGE 
COMPUTATIONAL 

RESOURCES

FULLY PHYSICS
COMPLIANT
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Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. M. Raissi A. Yazdani , G. E. Karniadakis , Science 367, 1026–1030 (2020)

ML-TRAINED ON A SPARSE SPATIO+TEMPORAL DATASET
FOR CONCENTRATION -> INFER VELOCITY + PRESSURE
-> BACK PROPAGATE FOR GRADIENTS (AUTOMATIC DIFFERENTIATION)-> 
NAVIER-STOKES 

PDE SOLVERS 
FOR 

AUGMENTED 
DATA-

ASSIMILATIONS

2D flow past a cylinder: low complexity



Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. M. Raissi A. Yazdani , G. E. Karniadakis, Science 367, 1026–1030 (2020)

SPATIAL RESOLUTION
TEMPORAL RESOL.

MEAN L2 ERROR

ML-TRAINED ON A SPARSE SPATIO+TEMPORAL DATASET
FOR CONCENTRATION -> INFER VELOCITY + PRESSURE
-> BACK PROPAGATE FOR GRADIENTS -> NAVIER-STOKES 

PDE SOLVERS 
FOR 

AUGMENTED 
DATA-

ASSIMILATIONS





EQUATIONS 
BASED

1. EQUATION-
INFORMED

2. PDE SOLVERS IN 
THE LOOP

DATA DRIVEN

1. DATA ASSIMILATION, FLOW RECONSTRUCTION, INPAINTING, SUPER-RESOLUTION
2. LARGE-EDDY-SIMULATIONS, MODEL REDUCTION, HOMOGENEIZATION



@tv +r(v ⌦ v) = �rp+ ⌫�v

??????

NEED TO MODEL NON-GAUSSIAN
& MULTI-SCALE PHYSICS !!!



EQUATIONS 
BASED

DATA DRIVEN
NO-

EQUATIONS

✓

ML for Fluid Mechanics. S. L. Brunton, B.R. Noack and P. Koumoultsakos Annu. Rev. Fluid Mech (2020) 
52, 477. TC 390

Scale-Invariance and Turbulence Models for Large-Eddy Simulation. C. Meneveau and J. Katz.  
Annu. Rev.  Fluid Mech Vol. 32:1-32 (2000)



EASY: USUAL BACK 
PROPAGATION (ML NATIVE) -> 
EXTREMELY FAST 

✓

APRIORI  SUPERVISED TRAINING

L(✓) =

Z
dt

Z
dx||⌧true(v, v)� ⌧(v̄,rv̄, ✓)||2COST:

GRADIENT DESCENT:

CALCULATION 
GRADIENTS OF COST:

DATA DRIVEN
NO-

EQUATIONS

1-step in time optimization -> no dynamics, no control of the impact on the PDE evolution/stability

See for a review: ML for Fluid Mechanics. S. L. Brunton,  B.R. Noack and P. Koumoultsakos.  Annu. Rev. Fluid Mech (2020) 52, 477. TC 390
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REPEAT N-TIMES

PDE SOLVERS 
IN THE LOOP

PROBLEM !!!!!!

APOSTERIORI SUPERVISED  TRAINING
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REPEAT N-TIMES

PDE SOLVERS 
IN THE LOOP

APOSTERIORI  TRAINING

Machine learning accelerated computational fluid dynamics. arXiv:2102.01010v1 [physics.flu-dyn] Jan 2021.
D. Kochkov,  J. A. Smith,  A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer

Numerical method for solving the underlying PDEs as a differentiable program, with the neural networks and the 
numerical method written in a framework (JAX ) supporting reverse-mode automatic differentiation. This allows for 
end-to-end gradient based optimization, of the entire algorithm (NSE included)

Automatic Differentiation in Machine Learning: a Survey. Baydin et al. arXiv:1502.05767v4 [cs.SC] 2018



✓
NAVIER-
STOKES 
SOLVER

[v̄✓(t+ �t)]

REPEAT N-TIMES

PDE SOLVERS 
IN THE LOOP

APOSTERIORI  TRAINING E(k) ⇠ k�5

GROUND TRUTH: 2D TURBULENCE 2048x2048 
ERROR OF LEARNED INTERPOLATIONS AT  64x64 IS 
EQUIVALENT TO  STANDARD DISCRETIZATION AT 512x512
GAIN X8 FOR A GIVEN ERROR TOLERANCE  

TIME TO 
95% CORRELATION

Machine learning accelerated computational fluid dynamics. arXiv:2102.01010v1 [physics.flu-dyn] Jan 2021.
D. Kochkov,  J. A. Smith,  A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer



ADJOINT BACK PROPAGATION METHOD

USE LAMBDA TO REMOVE ALL DERIVATIVES WRT  TO       AND REMAIN WITH LINEAR EQUATIONS FOR   

NAVIER-
STOKES 
SOLVER
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Embedded training of neural-network sub-grid-scale turbulence models J. F. MacArt,  J.  Sirignano, and J. B. Freund. May  2021 
arXiv:2105.01030v1

✓

PDE SOLVERS 
IN THE LOOP

APOSTERIORI SUPERVISED  TRAINING



Embedded training of neural-network sub-grid-scale turbulence models Jonathan F. MacArt,  Justin Sirignano, and Jonathan B. Freund. May  2021 arXiv:2105.01030v1

3D JET DNS: 1024x1280x768  LES 64x80x48 COLLOCATION POINTS

MEAN 
PROFILE

MEAN JET
WIDTH



2) Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers.
K, Um, R. Brand, Y.  R.  Fei, P. Holl. N Thuereyar Xiv:2007.00016v2 Jan 2021



2) Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers.
K, Um, R. Brand, Y.  R.  Fei, P. Holl. N Thuereyar Xiv:2007.00016v2 Jan 2021

APRIORI APOSTERIORI (SOLVER IN THE LOOP) 

DIFFERENT
LOOK AHEAD



- WE HAVE NEW TOOLS IN THE BOX
- NEW APPLICATIONS FOR PDEs SOLVERS AUGMENTED BY MACHINE LEARNING
- NEW APPLICATIONS FOR MACHINE LEARNING AUGMENTED BY PDEs 

BUT

- RATE OF PUBLICATIONS IN THE DOMAIN >> RATE OF READING/PEER REVIEWING -> DANGER OF INFLATIONARY 
ERA

- HUNDREDS OF PAPERS IN THE ARXIVES CITED BY HUNDREDS OF OTHER PAPERS WITHOUT CHECK ON THE 
RESULTS,  NOT EVEN WRONG!

- NEED FOR QUANTITATIVE AI:  SCALING, VALIDATION, BENCHMARKS, GENERALISATION, GRAND-CHALLENGES TO 
ESTABLISH BEST-PRACTISE

- NEED FOR PHYSICAL DIMENSIONALISATION: NETWORK STRUCTURE VS PHYSICAL PARAMETERS (deepness, 
structure, coding, # training data vs   Reynolds,  Rayleigh, Time-to-solution, Mach, Mass fraction etc…) 

- NEED FOR INTERDISCIPLINARY COLLABORATIONS:  APPLIED SCIENTISTS (FOR THE GOOD QUESTIONS) 
+ AI SPECIALISTS (TO OPEN THE BOX)  +  NUMERICAL SCIENTISTS  (FOR THE GOOD DATA)

ARE WE CLOSE TO AI SUPREMACY IN FLUID DYNAMICS?

LORENZ96

DESTINATION EARTH

QUANTITATIVE DNS 

WARNING


