Quantum Machine Learning

lordanis Kerenidis

Director, QC Ware France
Research Director, CNRS, U Paris

iordanis.kerenidis@gcware.com

‘(@3’ QCWARE



mailto:yianni.gamvros@qcware.com

Why care nhow about
Quantum Computing?



The quantum revolution 2.0



The quantum revolution 2.0

o Quantum is NOT a faster processor



The quantum revolution 2.0

o Quantum is NOT a faster processor

o Quantum is a fundamentally DIFFERENT way of performing computation that
can be MUCH FASTER for CERTAIN tasks



The quantum revolution 2.0

o Quantum is NOT a faster processor

o Quantum is a fundamentally DIFFERENT way of performing computation that
can be MUCH FASTER for CERTAIN tasks

o Quantum computing will NOT replace classical computing. It will open the
way to new applications in areas like Climate, Energy, Materials, Automotive,

Finance, Telecommunications, Pharmaceuticals, Healthcare, ...



The quantum revolution 2.0

o Quantum is NOT a faster processor

o Quantum is a fundamentally DIFFERENT way of performing computation that

can be MUCH FASTER for CERTAIN tasks

o Quantum computing will NOT replace classical computing. It will open the
way to new applications in areas like Climate, Energy, Materials, Automotive,

Finance, Telecommunications, Pharmaceuticals, Healthcare, ...

o We need to rethink and invent new algorithmic solutions



Getting to quantum applications
from the software side
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Better qubits Better performance



We focus on hard computing problems

Monte Carlo
Methods

Differential

Optimization Equations

Chemistry Machine
Simulation Learning

Near Term (3 - 5 years) | Medium Term (5+ years)
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Quantum Machine Learning Learning

o Large-scale quantum computers offer big advantages

o We have developed many of these algorithms — Classifiers, Recommenders, g-means, ...

Quantum Algorithms for Deep Convolutional Neural Networks - ICLR 2020
https://arxiv.org/abs/1911.01117

Quantum Expectation-Maximization for Gaussian Mixture Models - ICML 2020
https://arxiv.org/abs/1908.06657

g-means: A quantum algorithm for unsupervised machine learning - NeurlPS 2019
https://arxiv.org/abs/1812.03584

Quantum algorithms for Second-Order Cone Programming and Support Vector Machines, Quantum 2021
https://arxiv.org/abs/1908.06720

Quantum Algorithms for feedforward neural networks - ACM ToQC 2020
https://arxiv.org/abs/1812.03089

Quantum classification of the MNIST dataset via Slow Feature Analysis - PRA 2020
https://arxiv.org/abs/1808.09266

Quantum gradient descent for linear systems and least squares - PRA 2020
https://arxiv.org/abs/1704.04992

Quantum recommendation systems (2017) - Innovations on TCS 2017
https://arxiv.org/abs/1603.08675
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Quantum Machine Learning Learning

o Large-scale quantum computers offer big advantages

o We have developed many of these algorithms — Classifiers, Recommenders, g-means, ...

o We HAVE concrete avenues for bringing QML closer to reality

o Data Loaders
o Distance Estimators for Similarity Learning

o Linear algebra for ML

o QML may offer: Efficiency, Accuracy, Interpretability, Trust, Energy savings



A first example
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Quantum software

# let's create some synthetic data
X, y = generate data clusters()

# let's run the quantum classifier
glabels = fit_and predict(X,y=y,model='QNearestCentroid')

#import NearestCentroid from scikit-learn for benchmarking
clabels = sklearn.neighbors.NearestCentroid().fit(X,y).predict(X)

print('Quantum labels\n',qglabels)
print('Classical labels\n',clabels)

# let's plot the data (only for dimension=2)
plot(X,qlabels, 'QNearestCentroid')
plot(X,clabels, 'KNearestCentroid')

Quantum labels
[20010000112011012321222333330332]
Classical labels
[200100001120110123212223333360332]
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Quantum software

# let's create some synthetic data
X, y = generate data clusters()

# let's run the quantum classifier
glabels = fit_and predict(X,y=y,model='QNearestCentroid')

#import NearestCentroid from scikit-learn for benchmarking
clabels = sklearn.neighbors.NearestCentroid().fit(X,y).predict(X)

print('Quantum labels\n',qglabels)
print('Classical labels\n',clabels)

# let's plot the data (only for dimension=2)
plot(X,qlabels, 'QNearestCentroid')
plot(X,clabels, 'KNearestCentroid')

Quantum labels
[20010000112011012321222333330332]
Classical labels
[200100001120110123212223333360332]
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Quantum software

# let's create some synthetic data
X, y = generate data clusters()

# let's run the quantum classifier
glabels = fit_and predict(X,y=y,model='QNearestCentroid')

#import NearestCentroid from scikit-learn for benchmarking
clabels = sklearn.neighbors.NearestCentroid().fit(X,y).predict(X)

print('Quantum labels\n',qglabels)
print('Classical labels\n',clabels)

# let's plot the data (only for dimension=2)
plot(X,qlabels, 'QNearestCentroid')
plot(X,clabels, 'KNearestCentroid')

Quantum labels
[20010000112011012321222333330332]
Classical labels
[20010000112011012321222333330332]
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Nearest Centroid Classification on a Trapped Ion Quantum Computer

Sonika Johri,! Shantanu Debnath,! Avinash Mocherla,?3 Alexandros
Singh,>* Anupam Prakash,? Jungsang Kim,! and Iordanis Kerenidis®®
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Results

Classical Accuracy: 79.50%
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Many more applications



Recommendation Systems tkerenidis, Prakash, ITCs 17]
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Clustering

J-Means++ [Kerenidis,Landman,Luongo, Prakash NeurlPS 2019]

Input: N points in d-dimensions (quantum access)
Output: K clusters/centroids

1. Start with some initial centroids (e.g. ++-method)
Repeat until convergence
2. For all points in superposition

estimate distances to centroids quantumly
and assign to nearest centroid

3. Update the centroids
i.  Quantum linear algebra to find new centroid
ii. Tomography to recover classical description




Clustering: QC Ware-AFRL collaboration

g-means—++ [NeurlPS2019]

* NISQ implementation
* Simulations achieve comparable performance
 Faster qguantum running times

* Preparing for hardware demonstration
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Unsupervised learning

o Feature selection
o Methods related to determinantal sampling/volume sampling

o Expectation Maximization for Gaussian Mixture Models [K Luongo,Prakash ICML 2020]

o Spectral Clustering [K, Landman PRA 2021]

L

(b) Speciral Clustering




Reinforcement Learning

Quantum Policy lteration [Cherrat,Kerenidis,Prakash 2021]

Input: states S, actions A, transitions P, Rewards R
Output: policy T

1. Start with some initial 1,

Repeat until convergence
2. solve (I-yP™Q=R qguantum linear systems
3. update it from Q by measurements

Remarks
“No input” / Well-conditioned / #® guarantees




Quantum Neural Networks
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Quantum Optimization
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Optimization
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Send expectation value to optimiser




Optimization

Energy

Classical path =,

Solution Solution

Quantum Tunnelling Adiabatic evolution

Optimiser

10° qubit milestone: Error-corrected quantum computer

QFT

[Kerenidis,Prakash 2018]
[Kerenidis,Prakash,Szilagyi 20207 o/ 10 —{H]

Tiles f
100x100 physical qubits
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Conclusions

v" Quantum technologies will very soon

impact most industry sectors

v' Competitive advantage comes from

algorithms and models

v" The time to engage with quantum

technologies is now
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